Higher order parallel surfaces in the Heisenberg group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Surfaces in the Heisenberg Group

We investigate the minimal surface problem in the three dimensional Heisenberg group, H , equipped with its standard Carnot-Carathéodory metric. Using a particular surface measure, we characterize minimal surfaces in terms of a sub-elliptic partial differential equation and prove an existence result for the Plateau problem in this setting. Further, we provide a link between our minimal surfaces...

متن کامل

Higher Order Parallel Surfaces in Three-dimensional Homogeneous Spaces

We give a full classification of higher order parallel surfaces in three-dimensional homogeneous spaces with four-dimensional isometry group, i.e. in the so-called Bianchi-CartanVranceanu family. This gives a positive answer to a conjecture formulated in [2]. As a partial result, we prove that totally umbilical surfaces only exist if the space is a Riemannian product of a surface of constant Ga...

متن کامل

Polynomial Heisenberg algebras and higher order supersymmetry

It is shown that the higher order supersymmetric partners of the harmonic oscillator Hamiltonian provide the simplest non-trivial realizations of the polynomial Heisenberg algebras. A linearized version of the corresponding annihilation and creation operator leads to a Fock representation which is the same as for the harmonic oscillator Hamiltonian. 1. Introduction. The non-linear algebras have...

متن کامل

The Gauss Map of Minimal Surfaces in the Heisenberg Group

We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...

متن کامل

Minimal Surfaces and Harmonic Functions in the Heisenberg Group

We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2008

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2007.11.001